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The Correction of Sedimentation Coefficient Distributions for the Dependence of 
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A method is presented for correcting a distribution of sedimentation coefficient for the dependence of sedimentation coeffi­
cient on concentration. This is, in general, an important correction and cannot be neglected. The method is applicable to 
uncorrected distributions obtained by the method of Signer and Gross, when diffusion is negligible, or by the method of 
Baldwin and Williams, when diffusion is not negligible. A considerable saving in time is achieved by the use of this correc­
tion as compared to extrapolating the uncorrected distributions to infinite dilution. The method requires knowledge of how 
the sedimentation coefficients depend on concentration. 

Introduction 
Several problems in chemistry and biochemistry 

await the development of a rapid and accurate 
method for determining the distribution of mass in a 
system. For example, the size and heterogeneity 
of the fragments produced by enzyme action on 
proteins and polysaccharides are of great interest 
to the biochemist, and, in polymer chemistry, the 
question of how the distribution of molecular weight 
affects the measured properties of a polymer must 
continually be faced. 

Two instruments—both of them originally de­
veloped by Svedberg and his co-workers4—have been 
used to characterize mass heterogeneity; the equi­
librium centrifuge, which yields a distribution of 
molecular weight, and the velocity ultracentrifuge, 
which gives a distribution of sedimentation co­
efficient. A distribution of molecular weight is 
more readily interpreted than one of sedimentation 
coefficient but the latter may be obtained without 
any a priori assumptions as to the nature of the 
distribution5-3 and this is extremely difficult in the 
case of data from the equilibrium centrifuge.9-11 

Also the velocity ultracentrifuge experiment takes 
but a few hours in contrast to the situation with the 
equilibrium centrifuge, where two weeks may be 
required for a system to reach equilibrium. 

The boundary gradient curves obtained with the 
velocity ultracentrifuge may be transformed di­
rectly into distributions of sedimentation coefficient, 
provided that the spread of the boundary has not 
been affected significantly either by diffusion or by 
the dependence of sedimentation coefficient on con­
centration. Signer and Gross6 gave the following 
expression for transforming a boundary gradient 
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partial fulfillment of the requirements for the degree of Doctor of 
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(3) Rhodes Scholar. Department of Chemistry, University of Wis­
consin. 

(4) See T. Svedberg and K. O. Pedersen, "The Ultracentrifuge," 
Oxford University Press, Oxford, 1940. 
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curve into a distribution of sedimentation coefficient 
under these conditions 

g(s) = -=- oi2txz/cexoi ( la) 

In this expression, co is the angular speed of revolu­
tion, t is the time from the start of sedimentation, 
Co is the total concentration of the original solution, 
Xo is the distance from the center of rotation to the 
meniscus, x is the distance from the center of rota­
tion to a specified point in the boundary and dc/dx 
is the concentration gradient at this point. The 
weight fraction of material in the original solution 
of sedimentation coefficient 5 to s + ds is given by 
Z(s)ds." 

When the contribution of diffusion to the bound­
ary spread is not negligible, g(s) still may be ob­
tained by extrapolation of an "apparent distribu­
tion" g*(s) against 1/t to infinite time.6-8'14 Simi­
larly, when the dependence of sedimentation co-

(12) In general, the temperature and speed of rotation vary during 
sedimentation velocity measurements. This may be allowed for ex­
plicitly by rewriting (la) as 

g(s2o) - ^ X3 P eo» ^ d*/coXo2 ( l b ) 

rj is the solvent viscosity. This corresponds to rewriting the expres­

sion for the sedimentation coefficient, s = In —/ oi2t, as S20 =• In —/ 

^2 — &t and assumes that there is no significant error in setting svnt = 

S20T/20. If the sedimentation coefficient depends on concentration, the 

expression 5 = In — / oi2t gives an average s which will vary with t 
Xo/ 

because the concentration decreases with time. Alberty13 has dis­
cussed methods of calculating 5 which take this into account. At the 
highest concentration used in the experiments reported here, s changed 
by 2.5% from the beginning to the end of the centrifuge run. In 
general, conditions where this effect must be allowed for are not suit­
able for boundary-spreading measurements. 

The integral in (lb) is obtained by numerical integration and is first 
measured from an arbitrary time origin U; the complete integral is 
found by plotting In xp/xn (where xp denotes the position of the maxi-

£ t 
w2 ^i0 & a nd extrapolating to the meniscus 

w2 —dt. For simplicity, the speed and tempera-
0 it 

ture will be treated as constant throughout this paper, with the under­
standing that any variation may be allowed for in the manner indicated 
here. 

When the refractive increment, AM (the difference in refractive index 
between the original solution and dialysate in equilibrium with it) is 
directly proportional to Co and the proportionality constant is the same 
for all species present, (dc/dx)/co may be replaced by (dn/dx) / An in 
equations la and lb . Even when the proportionality constant* are 
not the same, doing this gives a well-defined distribution.' 

(13) R. A. Alberty, THIS JOURNAL, 76, 191 (1954). 
(U) R. L1 Baldwin, Biochim. / . , to be puhHal&ed. 
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efficient on concentration significantly affects the 
boundary spread, the distribution of sedimentation 
coefficient may be obtained by extrapolating curves 
of g(s), as defined by equation 1, to infinite dilu­
tion.15-17 However, this is a very time-consuming 
process and there is no theoretical guide for the 
form of the extrapolation to infinite dilution. In 
this paper, a method is presented for correcting the 
curve of g(s) obtained at a single concentration for 
the dependence of 5 on c. Only the case of negligi­
ble diffusion is considered here but it is shown how 
the method may be applied, when diffusion is not 
negligible, to the extrapolated curve of g(s). 

Theory 
To begin with, the situation in the ultracentrifuge 

will be described for the case when diffusion is 
negligible and s does not depend upon c. Sedi­
mentation is observed by studying the boundary 
which leaves the meniscus, moving outward from 
the center of rotation. (For convenience, this 
direction will be called to the right.) The velocity 
of sedimentation is given by the field strength, 
w2x, and the sedimentation coefficient, s: dx/dt = 
Su2X. This expression may be integrated to show 
that the solute molecules originally at the meniscus, 
Xo, will have sedimented after a time t to a position 
given by x = Xoes"H. Consequently this gives the 
position of the boundary formed by species of 
sedimentation coefficient s; just as all molecules 
of this (and other) species were to the right of xt> 
at the start of the experiment, so all of this species 
must be to the right of x at time t. 

The value of dc/dx at this plane is a direct 
measure of the amount of the species which van­
ishes at x (or first appears, depending upon your 
point of view) because the concentration of each 
species is constant to the right of the plane where it 
vanishes. There is a change with time, but not 
with distance, in the concentration of each species. 
(Because of the dilution caused by sedimentation in 
a sector-shaped cell and a changing field, 
ct = c0e-2s"".18 

Thus the boundary gradient curve is itself a 
distribution curve: it gives the concentration of a 
particular species versus its position in the bound­
ary. (Although all species of lesser sedimentation 
coefficient are also present at this position, they do 
not contribute to dc/dx.) The curve of dc/dx 
vs. x is not a conventional distribution function 
because the area under the curve is Coe~isuH; it is 
customary to normalize a distribution by requiring 
the area under the curve to be unity. In this case, 
if the distribution function, g(x), is defined as 
(dc/dx)e2suH/c0 then fg{x)dx = 1. 

In order to obtain g{s) from g{x) we need only 
make use of the general relation for changing 
variables of a distribution function19: g{s) ds = 
g(x)dx. By differentiating the expression for 

(15) I. Jullander, Arkiv. Kemi, Mineral., Geol, 21A, No. 8 (1945). 
(16) N . Gralen and G. Lagermalm, / . Phys. Chem., 56, 514 (1952). 
(17) A. Fuhlbrigge, A. Haltner, Jr., W. M. Saunders, K. van 

Holde, J. A. Williams, J. W. Williams, Progress Report to the Office 
of the Surgeon General, Dept. of the Army, November 30,1951. These 
experiments will be published in the usual way at a later time. 

(18) T. Svedberg and H. Rinde, T H I S JOOKNAI., 46, 2677 (1924). 
(19) T. C. Fry, "Probability and its Engineering UsWf," D, Van 

Noitraud Co,, Niw York, N. Y., 1818, p. 183. 

boundary position, x = xtf?aH, at a fixed value of 
u2t, dx/ds is found to be w2xt and g(s) = g(x) 
(dx/ds) = (dc/dx^^Wxt/d. This is identical 
with (la) since (x/x0)2 - e2suH. 

When the sedimentation coefficient depends upon 
concentration, this interpretation of the boundary 
gradient curves requires considerable modification. 
The problem will be split into two parts by assuming 
for the moment that dc/dx still measures the 
amount of the species vanishing at x. The effect 
of the dependence of s upon c may then be'de­
scribed as a sharpening of the boundary caused by 
a change in concentration from zero at the far 
left of the boundary to c o e - w ' at the far right. 
(This will be referred to as the boundary sharpening 
effect.) The equation giving the position at which, 
a species vanishes in the boundary is still x = Xoes"H, 
but now j is the sedimentation coefficient at Cx, Cx 
being the total concentration of all species at the 
plane where this species vanishes. Cx changes, of 
course, throughout the boundary and is different 
at every plane where a new species vanishes. 

The concentration at x is known (since diffusion 
is negligible, c must be zero at Xo and so Cx is simply 

J (dc/dx) dx); if the dependence of sedimentation 

coefficient of a species upon c* is known, its sedi­
mentation coefficient at infinite dilution can be 
calculated from 5 and cx. Then the correction for 
the dependence of 5 on c is simply once more a mat­
ter of changing variables in a distribution function ; 
So, the sedimentation coefficient at infinite dilution, 
is substituted for s, the sedimentation coefficient at 
a particular concentration in the boundary and 

ds 
g(so) = g(s) J - . This correction for the bound­
ary sharpening effect is essentially the same as the 
one proposed by Jullander,16 who considered the 
problem of transforming g(s) to g(M), the distribu­
tion of the molecular weight. 

However, dc/dx no longer measures the amount 
of the species vanishing at x when the sedimenta­
tion coefficients of the various species are depend­
ent upon the concentration. In fact, every species 
present at a plane in the boundary changes in con­
centration at that plane if its sedimentation co­
efficient varies with the total concentration. This 
effect, which was neglected by Jullander,15 was 
treated quantitatively by Johnston and Ogston20 

for systems of two components; they showed that 
if the sedimentation coefficient of the slower moving 
component is greater in the absence than in the 
presence of the leading component, there will be a 
corresponding change in concentration of the trail­
ing component. This may be thought of as the 
trailing component piling up behind the leading 
boundary because it moves more rapidly behind 
than in front of it, with the result that its con­
centration is greater behind the leading boundary 
than in front of it. 

This effect also appears in a single boundary 
when the substance forming the boundary is hetero­
geneous. The situation seems insuperably complex 
in a multicomponent system until one realizes 

(20) J1 P1 Johnston and A1 O. Ogston, Tram, Faraday Sac,. «3, 788 
(1946). 
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t ha t this is simply a question of the concentration 
of a species depending upon its sedimentation co­
efficient: the problem of correction for the John-
ston-Ogston effect then resolves itself into stating 
the sedimentation coefficient of a species as a 
function of the total concentration and of finding an 
expression for the rate of change of concentration 
of the species as its sedimentation coefficient 
changes. Then (,dc;/dj;)d5i may be integrated 
numerically from the point a t which i first appears 
in the boundary to the homogeneous solution a t 
the far right, where its concentration is related to 
tha t of the original solution by c\ = cBie~2siuH. 

I t is possible to find out from sedimentation 
velocity experiments how the sedimentation co­
efficient of a species depends on Cx; consequently 
it will be assumed here t ha t this information is 
given and t ha t ^ may be represented by S{ = Sm — 
f(cx) where f(cx) is a known function of the total 
concentration a t x. 

A s ta tement of the conservation of mass may be 
used to find an expression for dci/dsj. Consider 
two planes moving a t the ra te r, which are always 
separated by the fixed, infinitesimal distance Ax. 
The amount of solute contained between these 

rx+Ax 
planes is I Ac dx or, since Ax is infinitesimal, 

AxAc, where A is the cross-sectional area. The 
ra te of change with t ime of the mass in this lamella 
is equal to the inflow of solute, Jx, minus the out­
flow, Jx + Ax 

Equat ion 3c may be solved for dCi/dni 

It\*xAc) = Ax \c-d-

at dt 

1 + AH 
U +Adt\ 

dJ 
dx 

(2a) 

(2b) 

In order to make the nature of the problem clear, 
sedimentation in a rectangular cell with constant 
field strength will be considered first and the com­
plications, met in practice, of a sector-shaped cell 
and changing field will afterwards be taken into 
account. In a rectangular cell, the area is constant 
and since the proportionality constant does not 
enter into the final equation, it will be taken as 
unity. Equat ion 2b becomes 

dci d 
dt dx 

!«(», - r)\ (3a) 

where vi is the velocity of a particular solute com­
ponent, relative to the cell, and r is the velocity of 
the frame of reference. If this is specified as the 
velocity of a plane in the boundary where C1 is 
constant, then dd/dt = 0 and 

dci . di»i dCi . 
dx dx dx 

dci ( 

dx-\Vi + C1 
dni 
dci 

A = O 

(3b) 

(3c) 

Either dci/dx = 0 or r = v\ + Cx dvi/dci. Provided 
t ha t r is constant, i t must be equal to the velocity 
of the species vanishing a t this plane, i.e., r = 
(x — X0) /t, where Xo marks the plane a t which the 
boundary was formed.21 

(21) In order to show that r is constant, consider a plane in the 
boundary where the total concentration is constant. The sedimenta­
tion coefficient of each species is assumed to depend only upon the 
total concentration and consequently is constant. The concentration 
of each species VRr3a only with ita sedimentation cosmsient and so is 

d£i 
dvi r — Vi 

(3d) 

At first sight, this expression does not appear to be 
usable because C1 is unknown, although r and V\ 
are known. However, i t is in fact possible to use 
this to find C; a t any point in the boundary as well 
as in the homogeneous solution. The method of 
doing this is discussed under the heading Calcula­
tions. 

There still remains the problem of applying equa­
tion 2 to the case where the cell is sector shaped, so 
t ha t the cross-sectional area is proportional to the 
distance from the center of rotation (A = kx) and the 
velocity of sedimentation is also proportional to 
the distance from the center (dx/dt = sa>2x). 
Writ ing equation 2b for all species, without speci­
fying the rate of movement, r, of the frame of 
reference gives 

Sci 
d(kx) 

dt + kxX S£ = - -f- {2Ci kx{s^x - r)} (4a) dt ax 

The proportionality constant , k, drops out and 
dx/dt is simply r. 

dx dx 
,dc i 

2w2*2CiSi + rxZ^ 2 + cr (4b) 
dx 

S P + 2o,JSciSi + cAZSi ^ i + at ax 

J2XSCi 
dsj) ldc 

1 dx\I dx 
(4c) 

When the sedimentation coefficients of all species 
are independent of concentration (i.e., all dsi/dx = 
0) then only the species vanishing a t this plane 
gives rise to a non-zero dc/dx and r = (SdCi/d^ + 
2Co2Sc1Si)/dc/dx + w2xs'. This shows that , for the 
case of a sector-shaped cell and changing field, the 
natural analog of a plane a t constant concentration 
is a plane where dc/dt = — 2co2cs since the ra te of 
motion, r, of this plane is the field strength, co2x, 
times s', the sedimentation coefficient of the species 
vanishing a t this plane. 

Taking r now as the ra te of motion of a plane 
where dc;/d/ = — 2co2CiSi and returning to the case 
where d5,/dx is not zero, we find t ha t r/w2x = 
Si + ci(dsj/dci), which is exactly equivalent to the 
expression for the constant field. However, there 
are new complications in the way of proving t h a t 
r/w2x still equals 5' and so this will be taken by 
analogy from the two cases discussed above; it is 
a t least clear t ha t r/co2x cannot differ very much 
from s'. 

Calculations 
Values of dc/dx are taken throughout the bound­

ary a t the constant interval Ax (see Fig. 1); 
suppose t ha t fifteen such values are used. These 
are taken as representing fifteen components. 
The concentration of each is Axdci/dx and the sedi­
mentat ion coefficient of each a t the plane in the 
boundary where it vanishes is s-,'; this will of course 
be an average since values from si' — 1ZiAs to 5 / + 

constant. Since the same situation holds at a neighboring plane of 
constant total concentration dPi/dcj is also constant and therefore the 
value of r is constant. 
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1Z2As are included in the lamella X\ — 1ZiAx to 
Xi + VzAx. Similarly the sedimentation coeffi­
cient of each component at an infinite dilution, 
So;, is also an average value and the component 
includes values from Soi — 1AA5Oi to Soi + 1ZiASo. 

The problem in correcting for the Johnston-
Ogston effect is to find the correct concentration, 
C1 or Axdci/dx, of each component in the homo­
geneous solution—that is, the total concentration in 
the homogeneous solution of all species which vanish 
in the boundary with sedimentation coefficients 
from Si' — 1ZiAs to Si' + 1ZzAs. This concentration 
is readily converted into the weight fraction of the 
Ith component in the original solution (g(s,)As or 
g(soi)Aso) by dividing by Co, the total concentration 
of the original solution, and multiplying by eisiuH, 
where si is the sedimentation coefficient of the i'th 
component in the homogeneous solution. The 
problem in correcting for the boundary-sharpening 
effect is to find soi and As0: the species which are 
crowded together in As still represent the same 
weight fraction when they are spread out over the 
greater interval As0, and so g(soi) = g(s{) (Asi/AsoO. 

Consider now the situation at the first plane in 
the boundary: only component 1 is present and so 
Ax(dc/dx)xi represents Ci. On moving to the 
second plane, at Xi, the total concentration increases 
by Ac and the sedimentation coefficient of com­
ponent 1 consequently decreases by an amount 
(Asi)»,_»,. If s = So1 — kc then (Asi)*,-*, = — k 
(Ac) X1-Xi- The concentration of component 1 
decreases by the amount (Aci)Xi—xi = (Ci)xX Asi) Xl-Xl 

Z(rZO)^x — Si) Xf As a result, the concentration of 
component 2 is greater than Ax(dc/dx)x, by 
— (ACi)x,-a- (r/oi2x is taken as the sedimentation 
coefficient of the species vanishing at X2; it may be 
found by the method outlined in footnote 12 for 
finding s from \n(x/xo).) 

The same process is repeated in moving on to 
plane 3: Ci is decreased by (Ac1),,-!, = (ci)xi-
(Asi) X1 — X2 /(r/u2x - Si) Xu Ci is decreased by (Ac2)*,-X3 
and C3 is greater than Ax(dc/dx)x, by — (Aci + 
Ac2) x,-xf This process is continued step by step 
until the concentration in the homogeneous solution 
of each component is known. 

Once the concentrations in the homogeneous 
solution are known and converted to weight frac­
tions of the original solution, there remains only the 
problem of finding so and ds/dso values. I t is 
assumed that the relation between s and Cx is 

known. The concentration at x is sinr ply p(dc/ 
Jxv 

dx)dx—trapezoidal integration is convenient and 
sufficiently accurate—and so the process of finding 
so of the species vanishing at x is straightforward. 
Finally, ds/ds0 can be obtained either by plotting 
s against the corresponding s0 and reading the slope, 
or else simply by tabular differentiation. 

When diffusion is not negligible and g(s) must be 
obtained by extrapolation to infinite time'-8 '14 

an appropriate curve of dc/dx vs. x may be obtained 
by calculating dc/dx from g(s), at a time corre­
sponding to the middle of the centrifuge run, by 
means of equation 1. Alternatively a curve of dc/ 
ds vs. s will serve as well and is easier to obtain: 
it is found by multiplying g(s) by the dilution 

Fig. 1.—A representative boundary gradient curve. The 

position of the meniscus is marked by Xn. The concentration 

is constant to the right of the boundary; this is the region 

referred to in the text as the homogeneous solution. 

factor, e~2sw2', and the original concentration, Co.21a 

Strictly speaking, the problem of obtaining 
g(so) when neither the effects of diffusion nor those 
of concentration dependence of s are negligible 
should be solved by taking all three factors (hetero­
geneity, diffusion and concentration dependence) 
into account simultaneously. However, the diffi­
culties of doing this appear prohibitive at this 
time. The present approach of taking into account 
two factors at a time should be a satisfactory 
approximation. 

Discussion 
Figure 2 shows curves of g(s) vs. s for the same 

dextran sample measured at varying concentra­
tions; these were kindly made available to me 
before publication by Professor J. W. Williams.17 

The influence of diffusion on the spread of the 
boundary was not negligible and so these were ob­
tained by extrapolation to infinite time of an 
"apparent distribution."6-8 In order to provide a 
clearer basis of comparison, these curves have been 

normalized so that J0 i(s)ds 1. This amounted 

to a correction of 4%, on the average, to the area 
of each curve of g(s) vs. s and a correction of 8% 
in the case of the curve extrapolated to infinite 
dilution. The distribution is defined in such a 
way that the area under the curve is 1 but errors 
of extrapolation may cause the final curve obtained 
experimentally to differ from this. 

The following two expressions were used to 
represent the dependence of s on Cx, in testing the 
correction for the dependence of g(s) on concentra­
tion: Si = s0i(l — 0.2c) and s, = s0i(l — 0.06SMC), 

where c is in g./lOO ml. and s is in Svedberg units. 
(Although the composition, as well as the total 

(21a) (Footnote added in proof.) Since there is a dilution with 
time, extrapolation to infinite time could also remove some of the 
concentration dependence effects. However, as long as the changes 
brought about by the dilution with time are of the same order as the 
experimental uncertainty, such an effect would not be expected. An­
other problem in making these calculations for systems in which the 
effects of concentration dependence are large is the possibility of trans­
port by convection. Harrington and Schachman21b have shown that 
it occurs in two-solute systems as a consequence of the change with time 
in the Johnston-Ogston effect. Trautman, et al.,,l° have given a 
quantitative treatment of this for two-solute systems. The author 
would like to thank Dr. Trautman for making his manuscript available 
before publication and for discussion of this article. 

(21b) W. F. Harrington and H. K. Schachman, T H I S JOURNAL, 75, 
3833 (1953). 

(21c) R. Trautman, V. N. Schumaker, W. F. Harrington and H. K. 
Schachman, J. Chtm. Phyi., in prcH. 
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concentration, undoubtedly affects Si, no attempt 
was made to allow for this because the necessary 
experimental information was not available.) The 
former represents the dependence of s, the weight-
average sedimentation coefficient, on c for the data 
of Fig. 2.22 The latter satisfactorily represents the 
results obtained by E. F. Woods for a series of dex-
tran samples studied in this Laboratory.23 There 
may be differences in sedimentation behavior be­
tween these and the sample considered here, be­
cause of the difference in sources, so that it is diffi­
cult to say which of the two ways used to represent 
the dependence ot s on c is preferable. 

1 2 3 4 5 6 7 
j , Svedberg units. 

Fig. 2.—g(s) measured, without correction for the de­
pendence of J on c, at varying concentrations of the same 
dextran sample. The curve marked 0% was obtained by 
extrapolation. These curves were kindly made available by 
Dr. J. W. Williams.17 

In order to estimate the reliability of the curve 
extrapolated to infinite dilution (the one labeled 
0% in Fig. 2) another way of carrying out this 
extrapolation was tried. The extrapolated curve 
of Fig. 2 was obtained by plotting g(s) against c at 
fixed values of s; the extrapolations were fairly 
linear in this case.24 Figure 3 shows this curve and 
another obtained by plotting 5 against c at fixed 
values of the ratio g{s) to g(s)max-25 Also shown in 
this figure is a curve in which the correction to 
infinite dilution has been made by calculation 
(taking s; = Soi(l — 0.2c) rather than by extra­
polation; the curve labeled 0.44% in Fig. 2 is the 
starting curve for this calculation. The calculated 
curve agrees with either of the extrapolated curves 
better than they agree with each other. 

Figure 4 shows a more severe test of the theory. 
The corrected curves based on g(s) measured at the 

(22) The sedimentation coefficient corresponding to the maximum 
concentration gradient may be measured with greater precision but 
does not necessarily refer to the same species in sedimentation meas­
urements made at different concentrations. A method of measuring 
the weight-average sedimentation coefficient in the homogeneous phase 
has been described.14 

(23) A. G. Ogston and E. F. Woods, to be published. 
(24) J. W. Williams, personal communication. 
(25) ThU method of extrapolation was suggested by B. O. Dick. 
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Fig. 3.—Comparison of curves for infinite dilution. 

No. 1 is the extrapolated curve of Fig. 2. Xo. 2 was obtained 
by extrapolation of 5 versus c at fixed values of g(s)/g(s)m*x. 
and No. 3 has been calculated from the curve marked 0.44% 
in Fig. 2. 

highest (1.2%) and the lowest (0.44%) concentra­
tions are shown. Both ways of representing the 
dependence of 5 on c were tried. The agreement of 
the two curves calculated from g{s) at 0.44% is 
quite satisfactory, the agreement of the two curves 
from the higher concentration is less satisfactory. 

2 
3 

1 2 3 4 5 6 7 
So, Svedberg units. 

Fig. 4.—Comparison of curves corrected for the de­
pendence of ^ on c. In calculating 1 and 2, the dependence of 
s o n c was representedjay s\ = sa\ (1 — 0.2c), in 3 and 4 by 
tt = Sm (1 — 0.06soic). Nos. 1 and 3 were calculated from 
the curve marked 0.44% in Fig. 2, Nos. 2 and 4 from the 
curve marked 1.2%. 

Finally, Fig. 5 shows the magnitude of the correc­
tion and also the relative importance of the John-
ston-Ogston and boundary-sharpening effects; the 
curve of g(s) at 1.2% was used and the dependence 
of s on c represented by Si = SM(I — 0.2c). The 
curves which Jullander15 obtained after making a 
correction for the boundary-sharpening effect but 
not for the Johnston-Ogston effect are compared, 
in his paper, with ones extrapolated to infinite 
dilution (obtained by extrapolating separately the 
three parameters of a distribution function). 
Comparison of these with Fig. 5 of this paper shows 
that correction for the Johnston-Ogston effect 
would bring his two sets of curves closer together. 
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These results show that the correction gives a 
reliable distribution of g(s0) vs. SQ when applied to a 
curve of g(s) in which the effects of the dependence 
of s on c are not severe but nevertheless cannot be 
neglected. The value of the correction is that it 
effects a considerable saving of time, in comparison 
with extrapolation to infinite dilution, and perhaps 
a slight increase in accuracy. When diffusion can­
not be considered negligible and g(s) must be ob­
tained by extrapolation to infinite time, two days' 
work are required to obtain a curve of g(s) at a 
single concentration. Four such curves are required 
for extrapolation to infinite dilution, only one is re­
quired for the correction to infinite dilution. The 
time required to apply the correction is one half day. 

The chief source of error likely to be encountered 
in using this procedure is an inadequate knowledge 
of how the dependence of 5 upon cx is to be repre­
sented. When only a single sample of a substance 
is available, it is possible to determine no more 
than how the weight-average sedimentation co­
efficient varies with the total concentration and it 
does not necessarily follow that all species present 
will show this same behavior. Even when frac­
tions are available, so that the variation with con­
centration can be studied as a function of so, there 
is the further problem that si in general depends not 
only upon the total concentration, Cx, but also 
upon the composition at x. 

Considering this and both the magnitude and 
complexity of the correction, as shown by Fig. 5, 
(complex in the sense that not only the position 
but also the shape of the curve must be altered by 
the correction), the agreement of the curves in 
Fig. 4 calculated from the two concentrations is 
probably satisfactory, from the standpoint of 
testing the theory. From the experimental stand­
point of obtaining the best distribution, the curve 
of gis) measured at the lowest workable concentra­
tion should be used for finding g(so).26 

(26) The problem of correcting apparent diffusion coefficients for 

The water content of large protein crystals can be 
determined readily by loss in weight on drying.3 

Cl) One of the laboratories of the Bureau of Agricultural and In­
dustrial Chemistry, Agricultural Research Administration, U. S. 
Department of Agriculture. 

(2) Presented in part before the 120th Meeting of the American 
Chemical Society at New York, N. Y., September, 1951; and also 
in part at the Meeting of Federation of American Societies for Experi­
mental Biology, New York, N. Y., April, 1952. 

(S) T. L. McMeekln and R. C. Warner, Taia JOURNAL, 64, 2393 
(1843). 

s, Svedberg units. 

Fig. 5.-—Relative magnitudes of the Johnston-Ogston and 
the boundary-sharpening effects. No. 1 is the curve 
marked 1.2% in Fig. 2, No. 2 has been corrected for the 
Johnston-Ogston effect and No. 3 has been corrected for 
both the boundary-sharpening and Johnston-Ogston effects. 
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the dependence of s on c may be approached in a similar fashion: such 
treatment is reported elsewhere.14 

MADISON, WISCONSIN 

Estimates of the water in protein crystals have also 
been made by means of density and X-ray data.46 

The results of these measurements show the /3-
lactoglobulin and horse methemoglobin crystals 
contain about 0.8 g. of water per g. of protein in the 
absence of salt. If, however, the water content of 
these protein crystals is estimated by the method of 

(4) D. Crowfoot, Chem. Revs., 28, 215 (1941). 
(6) M. F. Feruti, Tram. Faraday See., XLIIB, 187 (194S). 
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Values are reported for the compositions and densities of /3-lactoglobulin, hemoglobin and chymotrypsin D P crystals in a 
number of salt solutions. /3-Lactoglobulin crystals suspended in ammonium sulfate solutions differ markedly from hemo­
globin and chymotrypsin crystals. The hydration of the protein, as calculated on the assumption that salt in the protein 
crystal is associated with the same amount of water as in the suspending medium, leads to values for protein hydration which 
are in good agreement with the relative vapor pressure water content curve except in cases where there is an apparently ex­
tensive combination of protein with salt. 


